Standard climate models radiation codes underestimate black carbon radiative forcing
نویسندگان
چکیده
Radiative forcing (RF) of black carbon (BC) in the atmosphere is estimated using radiative transfer codes of various complexities. Here we show that the two-stream radiative transfer codes used most in climate models give too strong forward scattering, leading to enhanced absorption at the surface and too weak absorption by BC in the atmosphere. Such calculations are found to underestimate the positive RF of BC by 10 % for global mean, all sky conditions, relative to the more sophisticated multi-stream models. The underestimation occurs primarily for low surface albedo, even though BC is more efficient for absorption of solar radiation over high surface albedo.
منابع مشابه
Do climate models reproduce observed solar dimming and brightening over China and Japan?
[1] Previous research indicates that clear‐sky downward solar radiation measured at the surface over China significantly decreased by about −8.6 W m per decade during 1961–1989 and insignificantly increased during 1990–1999. Furthermore, solar radiation over Japan remained relatively constant during 1971–1989 and significantly increased by +5.3 W m per decade during 1990–1999. The present study...
متن کاملObservationally constrained estimates of carbonaceous aerosol radiative forcing.
Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to b...
متن کاملBlack-carbon reduction of snow albedo
Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice1,2. In this study, we generated and characterized pure and black-carbonladen snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settings...
متن کاملToward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing
The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorpti...
متن کاملA Modeling Study on the Climate Impacts of Black Carbon Aerosols
The role of black carbon (BC) aerosols in climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to study the climatic impact of BC. The interannual variations of BC solar forcing derived from 20-year transient integrations are up to 4 times as large as the means mainly related to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015